M.Sc. - Mathematics
 I Semester End Examination - May 2022 Ordinary Differential Equations

Course Code: MM104T
Time: 3 hours

QP Code: 11004
Total Marks: 70

Instructions: 1) All questions carry equal marks.
2) Answer any five full questions.

1 a) State and prove Liouville's theorem.
b) If $\cos ^{3} x$ is one of the solutions of $y^{\prime \prime}+2 \tan x y^{\prime}+y=0$ determine the second solution.
c) Define fundamental set. Show that the solution set of $\frac{d^{4} y}{d x^{4}}+6 \frac{d^{3} y}{d x^{3}}+11 \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}=0$ is a fundamental set.

2 a) State and prove Strum's comparison theorem.
b) Solve by the method of variation of parameters of the equation $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=x^{3}$.
c) Define self-adjoint differential equation. Find the adjoint of the differential equation

$$
\begin{equation*}
x^{4} y^{\prime \prime \prime}+3 x^{3} y^{\prime \prime}+5 x^{2} y^{\prime}+12 x y=0 \tag{7+4+3}
\end{equation*}
$$

3 a) Establish the eigen function expansion formula for an eigen value problem. Expand x in terms of orthonormal eigen function of the eigen value problem $y^{\prime \prime}+\lambda y=0, y(0)=0$, $y(\pi)=0$.
b) Construct the Greens function for $y^{\prime \prime}+\lambda y=x, y(0)=0=y(1)$.

4 a) Prove that the eigenvalues of a self-adjoint eigenvalue problem are real.
b) For the eigenvalue problem $y^{\prime \prime}+\lambda y=0$ in $[0,1]$, show that the non-zero eigenvalue satisfies the equation $\tan \sqrt{\lambda}=\sqrt{\lambda}$ under the condition $y(0)=0, y(1)-y^{\prime}(1)=0$.
c) Show that $\frac{d y}{d x}=x^{2}+y, \quad y(0)=1$ with $|x| \leq 1,|y-1| \leq 1$ has a unique solution in $|x| \leq \frac{1}{3}$.

5 a) Find the power series solution of $\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}+p(p+1) y=0$ about an ordinary point.
b) Find the Frobenius solution of $x y^{\prime \prime}+2(1-x) y^{\prime}+(x-2) y=0$.

6 a) Show that Laguerre polynomials are orthogonal over $(0, \infty)$.
b) Prove that $T_{n+1}(x)-2 x T_{n}(x)+T_{n-1}(x)=0, \quad n \geq 1$.
c) Obtain the general solution of $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0$ where α is a constant.

$$
(6+4+4)
$$

7 a) Find the fundamental matrix and general solution of $\frac{d \vec{X}}{d t}=\left[\begin{array}{ccc}4 & 3 & 1 \\ -4 & -4 & -2 \\ 8 & 12 & 6\end{array}\right] \vec{X}$;

$$
\vec{X}=[x, y, z]^{T} .
$$

b) Determine the solution of $\frac{d x}{d t}=-3 y+e^{5 t}, \frac{d y}{d t}=2 x+4$, with $x(0)=0, y(0)=0$.

8 a) Determine the nature and stability of the critical point for the system:
i. $\quad x_{1}^{\prime}=x_{1}-x_{2} ; \quad x_{2}^{\prime}=x_{1}^{2}+x_{2}^{2}-2$.
ii. $\quad x_{1}^{\prime}=x_{1}-2 x_{2}-1 ; \quad x_{2}^{\prime}=2 x_{1}-3 x_{2}-3$.
b) Using the Liapunov function, determine the stability of the critical point $(0,0)$ of the system

$$
\begin{equation*}
\frac{d x}{d t}=-x^{5}-y^{3} ; \quad \frac{d y}{d t}=3 x^{3}-y^{3} \tag{8+6}
\end{equation*}
$$

